EconPapers    
Economics at your fingertips  
 

Robust explicit estimation of the two-parameter Birnbaum--Saunders distribution

Min Wang, Jing Zhao, Xiaoqian Sun and Chanseok Park

Journal of Applied Statistics, 2013, vol. 40, issue 10, 2259-2274

Abstract: The two-parameter Birnbaum--Saunders distribution is widely applicable to model failure times of fatiguing materials. Its maximum-likelihood estimators (MLEs) are very sensitive to outliers and also have no closed-form expressions. This motivates us to develop some alternative estimators. In this paper, we develop two robust estimators, which are also explicit functions of sample observations and are thus easy to compute. We derive their breakdown points and carry out extensive Monte Carlo simulation experiments to compare the performance of all the estimators under consideration. It has been observed from the simulation results that the proposed estimators outperform in a manner that is approximately comparable with the MLEs, whereas they are far superior in the presence of data contamination that often occurs in practical situations. A simple bias-reduction technique is presented to reduce the bias of the recommended estimators. Finally, the practical application of the developed procedures is illustrated with a real-data example.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.809570 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:40:y:2013:i:10:p:2259-2274

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2013.809570

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:40:y:2013:i:10:p:2259-2274