EconPapers    
Economics at your fingertips  
 

Estimation under modified Weibull distribution based on right censored generalized order statistics

Saieed F. Ateya

Journal of Applied Statistics, 2013, vol. 40, issue 12, 2720-2734

Abstract: In this paper, the maximum likelihood (ML) and Bayes, by using Markov chain Monte Carlo (MCMC), methods are considered to estimate the parameters of three-parameter modified Weibull distribution (MWD(β, τ, λ)) based on a right censored sample of generalized order statistics (gos). Simulation experiments are conducted to demonstrate the efficiency of the proposed methods. Some comparisons are carried out between the ML and Bayes methods by computing the mean squared errors (MSEs), Akaike's information criteria (AIC) and Bayesian information criteria (BIC) of the estimates to illustrate the paper. Three real data sets from Weibull(α, β) distribution are introduced and analyzed using the MWD(β, τ, λ) and also using the Weibull(α, β) distribution. A comparison is carried out between the mentioned models based on the corresponding Kolmogorov--Smirnov ( K -- S ) test statistic, {AIC and BIC} to emphasize that the MWD(β, τ, λ) fits the data better than the other distribution. All parameters are estimated based on type-II censored sample, censored upper record values and progressively type-II censored sample which are generated from the real data sets.

Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.825705 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:40:y:2013:i:12:p:2720-2734

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2013.825705

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:40:y:2013:i:12:p:2720-2734