Sparse cluster analysis of large-scale discrete variables with application to single nucleotide polymorphism data
Baolin Wu
Journal of Applied Statistics, 2013, vol. 40, issue 2, 358-367
Abstract:
Currently, extreme large-scale genetic data present significant challenges for cluster analysis. Most of the existing clustering methods are typically built on the Euclidean distance and geared toward analyzing continuous response. They work well for clustering, e.g. microarray gene expression data, but often perform poorly for clustering, e.g. large-scale single nucleotide polymorphism (SNP) data. In this paper, we study the penalized latent class model for clustering extremely large-scale discrete data. The penalized latent class model takes into account the discrete nature of the response using appropriate generalized linear models and adopts the lasso penalized likelihood approach for simultaneous model estimation and selection of important covariates. We develop very efficient numerical algorithms for model estimation based on the iterative coordinate descent approach and further develop the expectation--maximization algorithm to incorporate and model missing values. We use simulation studies and applications to the international HapMap SNP data to illustrate the competitive performance of the penalized latent class model.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.743977 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:40:y:2013:i:2:p:358-367
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2012.743977
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().