EconPapers    
Economics at your fingertips  
 

Instrumental variable-based empirical likelihood inferences for varying-coefficient models with error-prone covariates

Peixin Zhao and Liugen Xue

Journal of Applied Statistics, 2013, vol. 40, issue 2, 380-396

Abstract: This paper presents the empirical likelihood inferences for a class of varying-coefficient models with error-prone covariates. We focus on the case that the covariance matrix of the measurement errors is unknown and neither repeated measurements nor validation data are available. We propose an instrumental variable-based empirical likelihood inference method and show that the proposed empirical log-likelihood ratio is asymptotically chi-squared. Then, the confidence intervals for the varying-coefficient functions are constructed. Some simulation studies and a real data application are used to assess the finite sample performance of the proposed empirical likelihood procedure.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.744810 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:40:y:2013:i:2:p:380-396

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2012.744810

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:40:y:2013:i:2:p:380-396