Predicting infectious disease outbreak risk via migratory waterfowl vectors
Jacob Oleson and
Christopher Wikle
Journal of Applied Statistics, 2013, vol. 40, issue 3, 656-673
Abstract:
The spread of an emerging infectious disease is a major public health threat. Given the uncertainties associated with vector-borne diseases, in terms of vector dynamics and disease transmission, it is critical to develop statistical models that address how and when such an infectious disease could spread throughout a region such as the USA. This paper considers a spatio-temporal statistical model for how an infectious disease could be carried into the USA by migratory waterfowl vectors during their seasonal migration and, ultimately, the risk of transmission of such a disease to domestic fowl. Modeling spatio-temporal data of this type is inherently difficult given the uncertainty associated with observations, complexity of the dynamics, high dimensionality of the underlying process, and the presence of excessive zeros. In particular, the spatio-temporal dynamics of the waterfowl migration are developed by way of a two-tiered functional temporal and spatial dimension reduction procedure that captures spatial and seasonal trends, as well as regional dynamics. Furthermore, the model relates the migration to a population of poultry farms that are known to be susceptible to such diseases, and is one of the possible avenues toward transmission to domestic poultry and humans. The result is a predictive distribution of those counties containing poultry farms that are at the greatest risk of having the infectious disease infiltrate their flocks assuming that the migratory population was infected. The model naturally fits into the hierarchical Bayesian framework.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.750286 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:40:y:2013:i:3:p:656-673
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2012.750286
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().