Grouped penalization estimation of the osteoporosis data in the traditional Chinese medicine
Yang Li,
Yichen Qin,
Yanming Xie and
Feng Tian
Journal of Applied Statistics, 2013, vol. 40, issue 4, 699-711
Abstract:
Both continuous and categorical covariates are common in traditional Chinese medicine (TCM) research, especially in the clinical syndrome identification and in the risk prediction research. For groups of dummy variables which are generated by the same categorical covariate, it is important to penalize them group-wise rather than individually. In this paper, we discuss the group lasso method for a risk prediction analysis in TCM osteoporosis research. It is the first time to apply such a group-wise variable selection method in this field. It may lead to new insights of using the grouped penalization method to select appropriate covariates in the TCM research. The introduced methodology can select categorical and continuous variables, and estimate their parameters simultaneously. In our application of the osteoporosis data, four covariates (including both categorical and continuous covariates) are selected out of 52 covariates. The accuracy of the prediction model is excellent. Compared with the prediction model with different covariates, the group lasso risk prediction model can significantly decrease the error rate and help TCM doctors to identify patients with a high risk of osteoporosis in clinical practice. Simulation results show that the application of the group lasso method is reasonable for the categorical covariates selection model in this TCM osteoporosis research.
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.724660 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:40:y:2013:i:4:p:699-711
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2012.724660
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().