Adaptive choice of scale tests in flexible two-stage designs with applications in experimental ecology and clinical trials
Marco Marozzi
Journal of Applied Statistics, 2013, vol. 40, issue 4, 747-762
Abstract:
In this paper, the two-sample scale problem is addressed within the rank framework which does not require to specify the underlying continuous distribution. However, since the power of a rank test depends on the underlying distribution, it would be very useful for the researcher to have some information on it in order to use the possibly most suitable test. A two-stage adaptive design is used with adaptive tests where the data from the first stage are used to compute a selector statistic to select the test statistic for stage 2. More precisely, an adaptive scale test due to Hall and Padmanabhan and its components are considered in one-stage and several adaptive and non-adaptive two-stage procedures. A simulation study shows that the two-stage test with the adaptive choice in the second stage and with Liptak combination, when it is not more powerful than the corresponding one-stage test, shows, however, a quite similar power behavior. The test procedures are illustrated using two ecological applications and a clinical trial.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.752796 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:40:y:2013:i:4:p:747-762
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2012.752796
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().