A generalized quantile regression model
Vahid Nassiri and
Ignace Loris
Journal of Applied Statistics, 2013, vol. 40, issue 5, 1090-1105
Abstract:
A new class of probability distributions, the so-called connected double truncated gamma distribution, is introduced. We show that using this class as the error distribution of a linear model leads to a generalized quantile regression model that combines desirable properties of both least-squares and quantile regression methods: robustness to outliers and differentiable loss function.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.780158 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:40:y:2013:i:5:p:1090-1105
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.780158
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().