Bayesian networks for sex-related homicides: structure learning and prediction
Stephan Stahlschmidt,
Helmut Tausendteufel and
Wolfgang Härdle
Journal of Applied Statistics, 2013, vol. 40, issue 6, 1155-1171
Abstract:
Sex-related homicides tend to arouse wide media coverage and thus raise the urgency to find the responsible offender. However, due to the low frequency of such crimes, domain knowledge lacks completeness. We have therefore accumulated a large data-set and apply several structural learning algorithms to the data in order to combine their results into a single general graphic model. The graphical model broadly presents a distinction between an offender and a situation-driven crime. A situation-driven crime may be characterised by, amongst others, an offender lacking preparation and typically attacking a known victim in familiar surroundings. On the other hand, offender-driven crimes may be identified by the high level of forensic awareness demonstrated by the offender and the sophisticated measures applied to control the victim. The prediction performance of the graphical model is evaluated via a model averaging approach on the outcome variable offender's age. The combined graph undercuts the error rate of the single algorithms and an appropriate threshold results in an error rate of less than 10%, which describes a promising level for an actual implementation by the police.
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.780235 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:40:y:2013:i:6:p:1155-1171
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.780235
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().