EconPapers    
Economics at your fingertips  
 

An extensive power evaluation of a novel two-sample density-based empirical likelihood ratio test for paired data with an application to a treatment study of attention-deficit/hyperactivity disorder and severe mood dysregulation

Wan-Min Tsai, Albert Vexler and Gregory Gurevich

Journal of Applied Statistics, 2013, vol. 40, issue 6, 1189-1208

Abstract: In many case-control studies, it is common to utilize paired data when treatments are being evaluated. In this article, we propose and examine an efficient distribution-free test to compare two independent samples, where each is based on paired observations. We extend and modify the density-based empirical likelihood ratio test presented by Gurevich and Vexler [7] to formulate an appropriate parametric likelihood ratio test statistic corresponding to the hypothesis of our interest and then to approximate the test statistic nonparametrically. We conduct an extensive Monte Carlo study to evaluate the proposed test. The results of the performed simulation study demonstrate the robustness of the proposed test with respect to values of test parameters. Furthermore, an extensive power analysis via Monte Carlo simulations confirms that the proposed method outperforms the classical and general procedures in most cases related to a wide class of alternatives. An application to a real paired data study illustrates that the proposed test can be efficiently implemented in practice.

Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.784895 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:40:y:2013:i:6:p:1189-1208

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2013.784895

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:40:y:2013:i:6:p:1189-1208