Integer-valued autoregressive models for counts showing underdispersion
Christian H. Weiß
Journal of Applied Statistics, 2013, vol. 40, issue 9, 1931-1948
Abstract:
The Poisson distribution is a simple and popular model for count-data random variables, but it suffers from the equidispersion requirement, which is often not met in practice. While models for overdispersed counts have been discussed intensively in the literature, the opposite phenomenon, underdispersion, has received only little attention, especially in a time series context. We start with a detailed survey of distribution models allowing for underdispersion, discuss their properties and highlight possible disadvantages. After having identified two model families with attractive properties as well as only two model parameters, we combine these models with the INAR(1) model ( in teger-valued a uto r egressive), which is particularly well suited to obtain auotocorrelated counts with underdispersion. Properties of the resulting stationary INAR(1) models and approaches for parameter estimation are considered, as well as possible extensions to higher order autoregressions. Three real-data examples illustrate the application of the models in practice.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.800034 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:40:y:2013:i:9:p:1931-1948
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.800034
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().