Identifying radon-prone building typologies by marginal modelling
Riccardo Borgoni,
Valeria Tritto and
Daniela de Bartolo
Journal of Applied Statistics, 2013, vol. 40, issue 9, 2069-2086
Abstract:
Radon is a naturally occurring decay product of uranium known to be the main contributor to natural background radiation exposure. It has been established that the health risk related to radon exposure is lung cancer. In fact, radon is considered to be a major leading cause of lung cancer, second only to smoking. In this paper, we identified building typologies that affect the probability of detecting indoor radon concentration above reference values, using the data collected within two monitoring campaigns recently conducted in Northern Italy. This information is fundamental both in prevention, i.e. when the construction of a new building is planned and in mitigation, i.e. when a high concentration detected inside buildings has to be reduced. A spatial regression approach for binary data was adopted for this goal where some relevant covariates on the soil were retrieved by linking external spatial databases.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.804906 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:40:y:2013:i:9:p:2069-2086
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.804906
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().