Generating synthetic data to produce public-use microdata for small geographic areas based on complex sample survey data with application to the National Health Interview Survey
Joseph W. Sakshaug and
Trivellore E. Raghunathan
Journal of Applied Statistics, 2014, vol. 41, issue 10, 2103-2122
Abstract:
Small area statistics obtained from sample survey data provide a critical source of information used to study health, economic, and sociological trends. However, most large-scale sample surveys are not designed for the purpose of producing small area statistics. Moreover, data disseminators are prevented from releasing public-use microdata for small geographic areas for disclosure reasons; thus, limiting the utility of the data they collect. This research evaluates a synthetic data method, intended for data disseminators, for releasing public-use microdata for small geographic areas based on complex sample survey data. The method replaces all observed survey values with synthetic (or imputed) values generated from a hierarchical Bayesian model that explicitly accounts for complex sample design features, including stratification, clustering, and sampling weights. The method is applied to restricted microdata from the National Health Interview Survey and synthetic data are generated for both sampled and non-sampled small areas. The analytic validity of the resulting small area inferences is assessed by direct comparison with the actual data, a simulation study, and a cross-validation study.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.909778 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:10:p:2103-2122
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.909778
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().