Local composite quantile regression estimation of time-varying parameter vector for multidimensional time-inhomogeneous diffusion models
Ji-Xia Wang and
Qing-Xian Xiao
Journal of Applied Statistics, 2014, vol. 41, issue 11, 2437-2449
Abstract:
This paper is dedicated to the study of the composite quantile regression (CQR) estimations of time-varying parameter vectors for multidimensional diffusion models. Based on the local linear fitting for parameter vectors, we propose the local linear CQR estimations of the drift parameter vectors, and verify their asymptotic biases, asymptotic variances and asymptotic normality. Moreover, we discuss the asymptotic relative efficiency (ARE) of the local linear CQR estimations with respect to the local linear least-squares estimations. We obtain that the local estimations that we proposed are much more efficient than the local linear least-squares estimations. Simulation studies are constructed to show the performance of the estimations proposed.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.911824 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:11:p:2437-2449
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.911824
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().