Bayesian analysis of joint mean and covariance models for longitudinal data
Dengke Xu,
Zhongzhan Zhang and
Liucang Wu
Journal of Applied Statistics, 2014, vol. 41, issue 11, 2504-2514
Abstract:
Efficient estimation of the regression coefficients in longitudinal data analysis requires a correct specification of the covariance structure. If misspecification occurs, it may lead to inefficient or biased estimators of parameters in the mean. One of the most commonly used methods for handling the covariance matrix is based on simultaneous modeling of the Cholesky decomposition. Therefore, in this paper, we reparameterize covariance structures in longitudinal data analysis through the modified Cholesky decomposition of itself. Based on this modified Cholesky decomposition, the within-subject covariance matrix is decomposed into a unit lower triangular matrix involving moving average coefficients and a diagonal matrix involving innovation variances, which are modeled as linear functions of covariates. Then, we propose a fully Bayesian inference for joint mean and covariance models based on this decomposition. A computational efficient Markov chain Monte Carlo method which combines the Gibbs sampler and Metropolis--Hastings algorithm is implemented to simultaneously obtain the Bayesian estimates of unknown parameters, as well as their standard deviation estimates. Finally, several simulation studies and a real example are presented to illustrate the proposed methodology.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.920778 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:11:p:2504-2514
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.920778
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().