Functional response models for intraclass correlation coefficients
N. Lu,
T. Chen,
P. Wu,
D. Gunzler,
H. Zhang,
H. He and
X.M. Tu
Journal of Applied Statistics, 2014, vol. 41, issue 11, 2539-2556
Abstract:
Intraclass correlation coefficients (ICC) are employed in a wide range of behavioral, biomedical, psychosocial, and health care related research for assessing reliability of continuous outcomes. The linear mixed-effects model (LMM) is the most popular approach for inference about the ICC. However, since LMM is a normal distribution-based model and non-normal data are the norm rather than the exception in most studies, its applications to real study data always beg the question of inference validity. In this paper, we propose a distribution-free alternative to provide robust inference based on the functional response models. We illustrate the performance of the new approach using both real and simulated data.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.920780 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:11:p:2539-2556
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.920780
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().