Hierarchical Bayesian modeling of marked non-homogeneous Poisson processes with finite mixtures and inclusion of covariate information
Athanasios Christou Micheas
Journal of Applied Statistics, 2014, vol. 41, issue 12, 2596-2615
Abstract:
We investigate marked non-homogeneous Poisson processes using finite mixtures of bivariate normal components to model the spatial intensity function. We employ a Bayesian hierarchical framework for estimation of the parameters in the model, and propose an approach for including covariate information in this context. The methodology is exemplified through an application involving modeling of and inference for tornado occurrences.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.922167 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:12:p:2596-2615
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.922167
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().