Adaptive Bayes sum test for the equality of two nonparametric functions
Yangyi Xu,
Inyoung Kim and
Patrick Schaumont
Journal of Applied Statistics, 2014, vol. 41, issue 12, 2639-2657
Abstract:
The statistical difference among massive data sets or signals is of interest to many diverse fields including neurophysiology, imaging, engineering, and other related fields. However, such data often have nonlinear curves, depending on spatial patterns, and have non-white noise that leads to difficulties in testing the significant differences between them. In this paper, we propose an adaptive Bayes sum test that can test the significance between two nonlinear curves by taking into account spatial dependence and by reducing the effect of non-white noise. Our approach is developed by adapting the Bayes sum test statistic by Hart [13]. The spatial pattern is treated through Fourier transformation. Resampling techniques are employed to construct the empirical distribution of test statistic to reduce the effect of non-white noise. A simulation study suggests that our approach performs better than the alternative method, the adaptive Neyman test by Fan and Lin [9]. The usefulness of our approach is demonstrated with an application in the identification of electronic chips as well as an application to test the change of pattern of precipitations.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.925100 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:12:p:2639-2657
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.925100
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().