EconPapers    
Economics at your fingertips  
 

Adaptive Bayes sum test for the equality of two nonparametric functions

Yangyi Xu, Inyoung Kim and Patrick Schaumont

Journal of Applied Statistics, 2014, vol. 41, issue 12, 2639-2657

Abstract: The statistical difference among massive data sets or signals is of interest to many diverse fields including neurophysiology, imaging, engineering, and other related fields. However, such data often have nonlinear curves, depending on spatial patterns, and have non-white noise that leads to difficulties in testing the significant differences between them. In this paper, we propose an adaptive Bayes sum test that can test the significance between two nonlinear curves by taking into account spatial dependence and by reducing the effect of non-white noise. Our approach is developed by adapting the Bayes sum test statistic by Hart [13]. The spatial pattern is treated through Fourier transformation. Resampling techniques are employed to construct the empirical distribution of test statistic to reduce the effect of non-white noise. A simulation study suggests that our approach performs better than the alternative method, the adaptive Neyman test by Fan and Lin [9]. The usefulness of our approach is demonstrated with an application in the identification of electronic chips as well as an application to test the change of pattern of precipitations.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.925100 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:12:p:2639-2657

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2014.925100

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:41:y:2014:i:12:p:2639-2657