Sensitivity analysis for the identifiability with application to latent random effect model for the mixed data
E. Bahrami Samani
Journal of Applied Statistics, 2014, vol. 41, issue 12, 2761-2776
Abstract:
In this paper, we study the indentifiability of a latent random effect model for the mixed correlated continuous and ordinal longitudinal responses. We derive conditions for the identifiability of the covariance parameters of the responses. Also, we proposed sensitivity analysis to investigate the perturbation from the non-identifiability of the covariance parameters, it is shown how one can use some elements of covariance structure. These elements associate conditions for identifiability of the covariance parameters of the responses. Influence of small perturbation of these elements on maximal normal curvature is also studied. The model is illustrated using medical data.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.929641 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:12:p:2761-2776
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.929641
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().