Control chart for monitoring multivariate COM-Poisson attributes
Aamir Saghir and
Zhengyan Lin
Journal of Applied Statistics, 2014, vol. 41, issue 1, 200-214
Abstract:
Statistical process control of multi-attribute count data has received much attention with modern data-acquisition equipment and online computers. The multivariate Poisson distribution is often used to monitor multivariate attributes count data. However, little work has been done so far on under- or over-dispersed multivariate count data, which is common in many industrial processes, with positive or negative correlation. In this study, a Shewhart-type multivariate control chart is constructed to monitor such kind of data, namely the multivariate COM-Poisson (MCP) chart, based on the MCP distribution. The performance of the MCP chart is evaluated by the average run length in simulation. The proposed chart generalizes some existing multivariate attribute charts as its special cases. A real-life bivariate process and a simulated trivariate Poisson process are used to illustrate the application of the MCP chart.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.838666 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:1:p:200-214
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.838666
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().