Parameter estimation and prediction of order statistics for the Burr Type XII distribution with Type II censoring
Hanieh Panahi and
Abdolreza Sayyareh
Journal of Applied Statistics, 2014, vol. 41, issue 1, 215-232
Abstract:
This article deals with the statistical inference and prediction on Burr Type XII parameters based on Type II censored sample. It is observed that the maximum likelihood estimators (MLEs) cannot be obtained in closed form. We use the expectation-maximization algorithm to compute the MLEs. We also obtain the Bayes estimators under symmetric and asymmetric loss functions such as squared error and Linex By applying Lindley's approximation and Markov chain Monte Carlo (MCMC) technique. Further, MCMC samples are used to calculate the highest posterior density credible intervals. Monte Carlo simulation study and two real-life data-sets are presented to illustrate all of the methods developed here. Furthermore, we obtain a prediction of future order statistics based on the observed ordered because of its important application in different fields such as medical and engineering sciences. A numerical example carried out to illustrate the procedures obtained for prediction of future order statistics.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.838668 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:1:p:215-232
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.838668
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().