A method for choosing the smoothing parameter in a semi-parametric model for detecting change-points in blood flow
Sung Wan Han,
Rickson C. Mesquita,
Theresa M. Busch and
Mary E. Putt
Journal of Applied Statistics, 2014, vol. 41, issue 1, 26-45
Abstract:
In a smoothing spline model with unknown change-points, the choice of the smoothing parameter strongly influences the estimation of the change-point locations and the function at the change-points. In a tumor biology example, where change-points in blood flow in response to treatment were of interest, choosing the smoothing parameter based on minimizing generalized cross-validation (GCV) gave unsatisfactory estimates of the change-points. We propose a new method, aGCV, that re-weights the residual sum of squares and generalized degrees of freedom terms from GCV. The weight is chosen to maximize the decrease in the generalized degrees of freedom as a function of the weight value, while simultaneously minimizing aGCV as a function of the smoothing parameter and the change-points. Compared with GCV, simulation studies suggest that the aGCV method yields improved estimates of the change-point and the value of the function at the change-point.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.830085 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:1:p:26-45
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.830085
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().