EconPapers    
Economics at your fingertips  
 

Linear regression model with new symmetric distributed errors

A. Asrat Atsedeweyn and K. Srinivasa Rao

Journal of Applied Statistics, 2014, vol. 41, issue 2, 364-381

Abstract: Regression models play a dominant role in analyzing several data sets arising from areas like agricultural experiment, space experiment, biological experiment, financial modeling, etc. One of the major strings in developing the regression models is the assumption of the distribution of the error terms. It is customary to consider that the error terms follow the Gaussian distribution. However, there are some drawbacks of Gaussian errors such as the distribution being mesokurtic having kurtosis three. In many practical situations the variables under study may not be having mesokurtic but they are platykurtic. Hence, to analyze these sorts of platykurtic variables, a two-variable regression model with new symmetric distributed errors is developed and analyzed. The maximum likelihood (ML) estimators of the model parameters are derived. The properties of the ML estimators with respect to the new symmetrically distributed errors are also discussed. A simulation study is carried out to compare the proposed model with that of Gaussian errors and found that the proposed model performs better when the variables are platykurtic. Some applications of the developed model are also pointed out.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.839638 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:2:p:364-381

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2013.839638

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:41:y:2014:i:2:p:364-381