A Bayesian approach for locating change points in a compound Poisson process with application to detecting DNA copy number variations
Paul J. Plummer and
Jie Chen
Journal of Applied Statistics, 2014, vol. 41, issue 2, 423-438
Abstract:
This work examines the problem of locating changes in the distribution of a Compound Poisson Process where the variables being summed are iid normal and the number of variable follows the Poisson distribution. A Bayesian approach is developed to identify the location of significant changes in any of the parameters of the distribution, and a sliding window algorithm is used to identify multiple change points. These results can be applied in any field of study where an interest in locating changes not only in the parameter of a normally distributed data set but also in the rate of their occurrence. It has direct application to the study of DNA copy number variations in cancer research, where it is known that the distances between the genes can affect their intensity level.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.840272 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:2:p:423-438
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.840272
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().