Variance estimation in nonparametric regression with jump discontinuities
Wenlin Dai and
Tiejun Tong
Journal of Applied Statistics, 2014, vol. 41, issue 3, 530-545
Abstract:
Variance estimation is an important topic in nonparametric regression. In this paper, we propose a pairwise regression method for estimating the residual variance. Specifically, we regress the squared difference between observations on the squared distance between design points, and then estimate the residual variance as the intercept. Unlike most existing difference-based estimators that require a smooth regression function, our method applies to regression models with jump discontinuities. Our method also applies to the situations where the design points are unequally spaced. Finally, we conduct extensive simulation studies to evaluate the finite-sample performance of the proposed method and compare it with some existing competitors.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.842962 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:3:p:530-545
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.842962
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().