Transcription factor-binding site identification and gene classification via fusion of the supervised-weighted discrete kernel clustering and support vector machine
Insuk Sohn,
Jooyong Shim,
Changha Hwang,
Sujong Kim and
Jae Won Lee
Journal of Applied Statistics, 2014, vol. 41, issue 3, 573-581
Abstract:
The genetic regulatory mechanism heavily influences a substantial portion of biological functions and processes needed to sustain life. For a comprehensive mechanistic understanding of biological processes, it is important to identify the common transcription factor (TF) binding sites (TFBSs) from a set of promoter sequences of co-regulated genes and classify genes that are co-regulated by certain TFs, therefore to provide an insight into the mechanism that underlies the interaction among the co-regulated genes and complicate genetic regulation. We propose a new supervised-weighted discrete kernel clustering (SWDKC) classification method for the identification of TFBS and the classification of gene. Our SWDKC method gave smaller misclassification error rate than the other methods on both the simulated data and the real NF-κB data. We verify that the selected over-represented TFBSs serve informative TFBSs from a biological point of view.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.845143 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:3:p:573-581
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.845143
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().