EconPapers    
Economics at your fingertips  
 

A novel auto-regressive fractionally integrated moving average--least-squares support vector machine model for electricity spot prices prediction

Najeh Chaâbane

Journal of Applied Statistics, 2014, vol. 41, issue 3, 635-651

Abstract: In the framework of competitive electricity market, prices forecasting has become a real challenge for all market participants. However, forecasting is a rather complex task since electricity prices involve many features comparably with those in financial markets. Electricity markets are more unpredictable than other commodities referred to as extreme volatile. Therefore, the choice of the forecasting model has become even more important. In this paper, a new hybrid model is proposed. This model exploits the feature and strength of the auto-regressive fractionally integrated moving average model as well as least-squares support vector machine model. The expected prediction combination takes advantage of each model's strength or unique capability. The proposed model is examined by using data from the Nordpool electricity market. Empirical results showed that the proposed method has the best prediction accuracy compared to other methods.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.847068 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:3:p:635-651

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2013.847068

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:41:y:2014:i:3:p:635-651