EconPapers    
Economics at your fingertips  
 

Multilevel modelling of survey data: impact of the two-level weights used in the pseudolikelihood

Jean-Paul Lucas, V�ronique S�bille, Alain Le Tertre, Yann Le Strat and Lise Bellanger

Journal of Applied Statistics, 2014, vol. 41, issue 4, 716-732

Abstract: Approaches that use the pseudolikelihood to perform multilevel modelling on survey data have been presented in the literature. To avoid biased estimates due to unequal selection probabilities, conditional weights can be introduced at each level. Less-biased estimators can also be obtained in a two-level linear model if the level-1 weights are scaled. In this paper, we studied several level-2 weights that can be introduced into the pseudolikelihood when the sampling design and the hierarchical structure of the multilevel model do not match. Two-level and three-level models were studied. The present work was motivated by a study that aims to estimate the contributions of lead sources to polluting the interior floor dust of the rooms within dwellings. We performed a simulation study using the real data collected from a French survey to achieve our objective. We conclude that it is preferable to use unweighted analyses or, at the most, to use conditional level-2 weights in a two-level or a three-level model. We state some warnings and make some recommendations.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.847404 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:4:p:716-732

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2013.847404

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:41:y:2014:i:4:p:716-732