Multilevel modelling of survey data: impact of the two-level weights used in the pseudolikelihood
Jean-Paul Lucas,
V�ronique S�bille,
Alain Le Tertre,
Yann Le Strat and
Lise Bellanger
Journal of Applied Statistics, 2014, vol. 41, issue 4, 716-732
Abstract:
Approaches that use the pseudolikelihood to perform multilevel modelling on survey data have been presented in the literature. To avoid biased estimates due to unequal selection probabilities, conditional weights can be introduced at each level. Less-biased estimators can also be obtained in a two-level linear model if the level-1 weights are scaled. In this paper, we studied several level-2 weights that can be introduced into the pseudolikelihood when the sampling design and the hierarchical structure of the multilevel model do not match. Two-level and three-level models were studied. The present work was motivated by a study that aims to estimate the contributions of lead sources to polluting the interior floor dust of the rooms within dwellings. We performed a simulation study using the real data collected from a French survey to achieve our objective. We conclude that it is preferable to use unweighted analyses or, at the most, to use conditional level-2 weights in a two-level or a three-level model. We state some warnings and make some recommendations.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.847404 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:4:p:716-732
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.847404
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().