EconPapers    
Economics at your fingertips  
 

On the generalized process capability under simple and mixture models

Sajid Ali and Muhammad Riaz

Journal of Applied Statistics, 2014, vol. 41, issue 4, 832-852

Abstract: Process capability (PC) indices measure the ability of a process of interest to meet the desired specifications under certain restrictions. There are a variety of capability indices available in literature for different interest variables such as weights, lengths, thickness, and the life time of items among many others. The goal of this article is to study the generalized capability indices from the Bayesian view point under different symmetric and asymmetric loss functions for the simple and mixture of generalized lifetime models. For our study purposes, we have covered a simple and two component mixture of Maxwell distribution as a special case of the generalized class of models. A comparative discussion of the PC with the mixture models under Laplace and inverse Rayleigh are also included. Bayesian point estimation of maintenance performance of the system is also part of the study (considering the Maxwell failure lifetime model and the repair time model). A real-life example is also included to illustrate the procedural details of the proposed method.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.856386 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:4:p:832-852

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2013.856386

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:41:y:2014:i:4:p:832-852