On the generalized process capability under simple and mixture models
Sajid Ali and
Muhammad Riaz
Journal of Applied Statistics, 2014, vol. 41, issue 4, 832-852
Abstract:
Process capability (PC) indices measure the ability of a process of interest to meet the desired specifications under certain restrictions. There are a variety of capability indices available in literature for different interest variables such as weights, lengths, thickness, and the life time of items among many others. The goal of this article is to study the generalized capability indices from the Bayesian view point under different symmetric and asymmetric loss functions for the simple and mixture of generalized lifetime models. For our study purposes, we have covered a simple and two component mixture of Maxwell distribution as a special case of the generalized class of models. A comparative discussion of the PC with the mixture models under Laplace and inverse Rayleigh are also included. Bayesian point estimation of maintenance performance of the system is also part of the study (considering the Maxwell failure lifetime model and the repair time model). A real-life example is also included to illustrate the procedural details of the proposed method.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.856386 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:4:p:832-852
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.856386
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().