Minimax D-optimal designs of contingent valuation experiments: willingness to pay for environmentally friendly clothes
Ellinor Fackle-Fornius and
Linda Anna W�nstr�m
Journal of Applied Statistics, 2014, vol. 41, issue 4, 895-908
Abstract:
This paper demonstrates how to plan a contingent valuation experiment to assess the value of ecologically produced clothes. First, an appropriate statistical model (the trinomial spike model) that describes the probability that a randomly selected individual will accept any positive bid, and if so, will accept the bid A, is defined. Secondly, an optimization criterion that is a function of the variances of the parameter estimators is chosen. However, the variances of the parameter estimators in this model depend on the true parameter values. Pilot study data are therefore used to obtain estimates of the parameter values and a locally optimal design is found. Because this design is only optimal given that the estimated parameter values are correct, a design that minimizes the maximum of the criterion function over a plausable parameter region (i.e. a minimax design) is then found.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.858670 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:4:p:895-908
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.858670
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().