A joint model of binary and longitudinal data with non-ignorable missingness, with application to marital stress and late-life major depression in women
Nanhua Zhang,
Henian Chen and
Yuanshu Zou
Journal of Applied Statistics, 2014, vol. 41, issue 5, 1028-1039
Abstract:
Understanding how long-term marital stress affects major depressive disorder (MDD) in older women has clinical implications for the treatment of women at risk. In this paper, we consider the problem of predicting MDD in older women (mean age 60) from a marital stress scale administered four times during the preceding 20-year period, with a greater dropout by women experiencing marital stress or MDD. To analyze these data, we propose a Bayesian joint model consisting of: (1) a linear mixed effects model for the longitudinal measurements, (2) a generalized linear model for the binary primary endpoint, and (3) a shared parameter model for the missing data mechanism. Our analysis indicates that MDD in older women is significantly associated with higher levels of prior marital stress and increasing marital stress over time, although there is a generally decreasing trend in marital stress. This is the first study to propose a joint model for incompletely observed longitudinal measurements, a binary primary endpoint, and non-ignorable missing data; a comparison shows that the joint model yields better predictive accuracy than a two-stage model. These findings suggest that women who experience marital stress in mid-life need treatment to help prevent late-life MDD, which has serious consequences for older persons.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.859235 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:5:p:1028-1039
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.859235
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().