Analysis of ordinal outcomes with longitudinal covariates subject to missingness
Melody S. Goodman,
Yi Li,
Anne M. Stoddard and
Glorian Sorensen
Journal of Applied Statistics, 2014, vol. 41, issue 5, 1040-1052
Abstract:
We propose a mixture model for data with an ordinal outcome and a longitudinal covariate that is subject to missingness. Data from a tailored telephone delivered, smoking cessation intervention for construction laborers are used to illustrate the method, which considers as an outcome a categorical measure of smoking cessation, and evaluates the effectiveness of the motivational telephone interviews on this outcome. We propose two model structures for the longitudinal covariate, for the case when the missing data are missing at random, and when the missing data mechanism is non-ignorable. A generalized EM algorithm is used to obtain maximum likelihood estimates.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.859236 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:5:p:1040-1052
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.859236
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().