Detection of multiple undocumented change-points using adaptive Lasso
Jie Shen,
Colin M. Gallagher and
QiQi Lu
Journal of Applied Statistics, 2014, vol. 41, issue 6, 1161-1173
Abstract:
The problem of detecting multiple undocumented change-points in a historical temperature sequence with simple linear trend is formulated by a linear model. We apply adaptive least absolute shrinkage and selection operator (Lasso) to estimate the number and locations of change-points. Model selection criteria are used to choose the Lasso smoothing parameter. As adaptive Lasso may overestimate the number of change-points, we perform post-selection on change-points detected by adaptive Lasso using multivariate t simultaneous confidence intervals. Our method is demonstrated on the annual temperature data (year: 1902-2000) from Tuscaloosa, Alabama.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.862220 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:6:p:1161-1173
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.862220
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().