EconPapers    
Economics at your fingertips  
 

Analysis of covariance under inverse Gaussian model

Mohammad Reza Meshkani, Afshin Fallah and Amir Kavousi

Journal of Applied Statistics, 2014, vol. 41, issue 6, 1189-1202

Abstract: This paper considers the problem of analysis of covariance (ANCOVA) under the assumption of inverse Gaussian distribution for response variable. We develop the essential methodology for estimating the model parameters via maximum likelihood method. The general form of the maximum likelihood estimator is obtained in color closed form. Adjusted treatment effects and adjusted covariate effects are given, too. We also provide the asymptotic distribution of the proposed estimators. A simulation study and a real world application are also performed to illustrate and evaluate the proposed methodology.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.862222 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:6:p:1189-1202

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2013.862222

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:41:y:2014:i:6:p:1189-1202