Bayesian zero-inflated generalized Poisson regression model: estimation and case influence diagnostics
Feng-Chang Xie,
Jin-Guan Lin and
Bo-Cheng Wei
Journal of Applied Statistics, 2014, vol. 41, issue 6, 1383-1392
Abstract:
Count data with excess zeros arises in many contexts. Here our concern is to develop a Bayesian analysis for the zero-inflated generalized Poisson (ZIGP) regression model to address this problem. This model provides a useful generalization of zero-inflated Poisson model since the generalized Poisson distribution is overdispersed/underdispersed relative to Poisson. Due to the complexity of the ZIGP model, Markov chain Monte Carlo methods are used to develop a Bayesian procedure for the considered model. Additionally, some discussions on the model selection criteria are presented and a Bayesian case deletion influence diagnostics is investigated for the joint posterior distribution based on the Kullback-Leibler divergence. Finally, a simulation study and a psychological example are given to illustrate our methodology.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.871508 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:6:p:1383-1392
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.871508
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().