Generalized confidence interval estimation for the mean of delta-lognormal distribution: an application to New Zealand trawl survey data
Wei-Hwa Wu and
Hsin-Neng Hsieh
Journal of Applied Statistics, 2014, vol. 41, issue 7, 1471-1485
Abstract:
Highly skewed and non-negative data can often be modeled by the delta-lognormal distribution in fisheries research. However, the coverage probabilities of extant interval estimation procedures are less satisfactory in small sample sizes and highly skewed data. We propose a heuristic method of estimating confidence intervals for the mean of the delta-lognormal distribution. This heuristic method is an estimation based on asymptotic generalized pivotal quantity to construct generalized confidence interval for the mean of the delta-lognormal distribution. Simulation results show that the proposed interval estimation procedure yields satisfactory coverage probabilities, expected interval lengths and reasonable relative biases. Finally, the proposed method is employed in red cod densities data for a demonstration.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.881780 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:7:p:1471-1485
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.881780
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().