EconPapers    
Economics at your fingertips  
 

Sensitivity analysis of the unconfoundedness assumption with an application to an evaluation of college choice effects on earnings

Xavier de Luna and Mathias Lundin

Journal of Applied Statistics, 2014, vol. 41, issue 8, 1767-1784

Abstract: We evaluate the effects of college choice on earnings using Swedish register databases. This case study is used to motivate the introduction of a novel procedure to analyse the sensitivity of such an observational study to the assumption made that there are no unobserved confounders - variables affecting both college choice and earnings. This assumption is not testable without further information, and should be considered an approximation of reality. To perform a sensitivity analysis, we measure the departure from the unconfoundedness assumption with the correlation between college choice and earnings when conditioning on observed covariates. The use of a correlation as a measure of dependence allows us to propose a standardised procedure by advocating the use of a fixed value for the correlation, typically 1% or 5%, when checking the sensitivity of an evaluation study. A correlation coefficient is, moreover, intuitive to most empirical scientists, which makes the results of our sensitivity analysis easier to communicate than those of previously proposed methods. In our evaluation of the effects of college choice on earnings, the significantly positive effect obtained could not be questioned by a sensitivity analysis allowing for unobserved confounders inducing at most 5% correlation between college choice and earnings.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.890178 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:8:p:1767-1784

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2014.890178

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:41:y:2014:i:8:p:1767-1784