Eliciting expert judgements about a set of proportions
Rita Esther Zapata-V�zquez,
Anthony O'Hagan and
Leonardo Soares Bastos
Journal of Applied Statistics, 2014, vol. 41, issue 9, 1919-1933
Abstract:
Eliciting expert knowledge about several uncertain quantities is a complex task when those quantities exhibit associations. A well-known example of such a problem is eliciting knowledge about a set of uncertain proportions which must sum to 1. The usual approach is to assume that the expert's knowledge can be adequately represented by a Dirichlet distribution, since this is by far the simplest multivariate distribution that is appropriate for such a set of proportions. It is also the most convenient, particularly when the expert's prior knowledge is to be combined with a multinomial sample since then the Dirichlet is the conjugate prior family. Several methods have been described in the literature for eliciting beliefs in the form of a Dirichlet distribution, which typically involve eliciting from the expert enough judgements to identify uniquely the Dirichlet hyperparameters. We describe here a new method which employs the device of over-fitting, i.e. eliciting more than the minimal number of judgements, in order to (a) produce a more carefully considered Dirichlet distribution and (b) ensure that the Dirichlet distribution is indeed a reasonable fit to the expert's knowledge. The method has been implemented in a software extension of the Sheffield elicitation framework (SHELF) to facilitate the multivariate elicitation process.
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.898131 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:9:p:1919-1933
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.898131
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().