Smoothed functional canonical correlation analysis of humidity and temperature data
Istem Koymen Keser and
Ipek Deveci Kocako�
Journal of Applied Statistics, 2015, vol. 42, issue 10, 2126-2140
Abstract:
This paper focuses on smoothed functional canonical correlation analysis (SFCCA) to investigate the relationships and changes in large, seasonal and long-term data sets. The aim of this study is to introduce a guideline for SFCCA for functional data and to give some insights on the fine tuning of the methodology for long-term periodical data. The guidelines are applied on temperature and humidity data for 11 years between 2000 and 2010 and the results are interpreted. Seasonal changes or periodical shifts are visually studied by yearly comparisons. The effects of the 'number of basis functions' and the 'selection of smoothing parameter' on the general variability structure and on correlations between the curves are examined. It is concluded that the number of time points (knots), number of basis functions and the time span of evaluation (monthly, daily, etc.) should all be chosen harmoniously. It is found that changing the smoothing parameter does not have a significant effect on the structure of curves and correlations. The number of basis functions is found to be the main effector on both individual and correlation weight functions.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1019842 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:10:p:2126-2140
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1019842
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().