New flexible models generated by gamma random variables for lifetime modeling
Edwin M.M. Ortega,
Artur J. Lemonte,
Giovana O. Silva and
Gauss M. Cordeiro
Journal of Applied Statistics, 2015, vol. 42, issue 10, 2159-2179
Abstract:
In this paper we introduce a new three-parameter exponential-type distribution. The new distribution is quite flexible and can be used effectively in modeling survival data and reliability problems. It can have constant, decreasing, increasing, upside-down bathtub and bathtub-shaped hazard rate functions. It also generalizes some well-known distributions. We discuss maximum likelihood estimation of the model parameters for complete sample and for censored sample. Additionally, we formulate a new cure rate survival model by assuming that the number of competing causes of the event of interest has the Poisson distribution and the time to this event follows the proposed distribution. Maximum likelihood estimation of the model parameters of the new cure rate survival model is discussed for complete sample and censored sample. Two applications to real data are provided to illustrate the flexibility of the new model in practice.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1021669 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:10:p:2159-2179
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1021669
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().