EconPapers    
Economics at your fingertips  
 

Joint modeling of mixed skewed continuous and ordinal longitudinal responses: a Bayesian approach

M. Teimourian, T. Baghfalaki, M. Ganjali and D. Berridge

Journal of Applied Statistics, 2015, vol. 42, issue 10, 2233-2256

Abstract: In this paper, a joint model for analyzing multivariate mixed ordinal and continuous responses, where continuous outcomes may be skew, is presented. For modeling the discrete ordinal responses, a continuous latent variable approach is considered and for describing continuous responses, a skew-normal mixed effects model is used. A Bayesian approach using Markov Chain Monte Carlo (MCMC) is adopted for parameter estimation. Some simulation studies are performed for illustration of the proposed approach. The results of the simulation studies show that the use of the separate models or the normal distributional assumption for shared random effects and within-subject errors of continuous and ordinal variables, instead of the joint modeling under a skew-normal distribution, leads to biased parameter estimates. The approach is used for analyzing a part of the British Household Panel Survey (BHPS) data set. Annual income and life satisfaction are considered as the continuous and the ordinal longitudinal responses, respectively. The annual income variable is severely skewed, therefore, the use of the normality assumption for the continuous response does not yield acceptable results. The results of data analysis show that gender, marital status, educational levels and the amount of money spent on leisure have a significant effect on annual income, while marital status has the highest impact on life satisfaction.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1023557 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:10:p:2233-2256

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2015.1023557

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:42:y:2015:i:10:p:2233-2256