Robust pairwise multiple comparisons under short-tailed symmetric distributions
Sibel Balci and
Aysen Dener Akkaya
Journal of Applied Statistics, 2015, vol. 42, issue 11, 2293-2306
Abstract:
In one-way ANOVA, most of the pairwise multiple comparison procedures depend on normality assumption of errors. In practice, errors have non-normal distributions so frequently. Therefore, it is very important to develop robust estimators of location and the associated variance under non-normality. In this paper, we consider the estimation of one-way ANOVA model parameters to make pairwise multiple comparisons under short-tailed symmetric (STS) distribution. The classical least squares method is neither efficient nor robust and maximum likelihood estimation technique is problematic in this situation. Modified maximum likelihood (MML) estimation technique gives the opportunity to estimate model parameters in closed forms under non-normal distributions. Hence, the use of MML estimators in the test statistic is proposed for pairwise multiple comparisons under STS distribution. The efficiency and power comparisons of the test statistic based on sample mean, trimmed mean, wave and MML estimators are given and the robustness of the test obtained using these estimators under plausible alternatives and inlier model are examined. It is demonstrated that the test statistic based on MML estimators is efficient and robust and the corresponding test is more powerful and having smallest Type I error.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1023706 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:11:p:2293-2306
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1023706
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().