The construction of a partial least-squares biplot
Opeoluwa F. Oyedele and
Sugnet Lubbe
Journal of Applied Statistics, 2015, vol. 42, issue 11, 2449-2460
Abstract:
Biplots are useful tools to explore the relationship among variables. In this paper, the specific regression relationship between a set of predictors X and set of response variables Y by means of partial least-squares (PLS) regression is represented. The PLS biplot provides a single graphical representation of the samples together with the predictor and response variables, as well as their interrelationships in terms of the matrix of regression coefficients.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1043858 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:11:p:2449-2460
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1043858
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().