Detecting diagnostic accuracy of two biomarkers through a bivariate log-normal ROC curve
Sudesh Pundir and
R. Amala
Journal of Applied Statistics, 2015, vol. 42, issue 12, 2671-2685
Abstract:
In biomedical research, two or more biomarkers may be available for diagnosis of a particular disease. Selecting one single biomarker which ideally discriminate a diseased group from a healthy group is confront in a diagnostic process. Frequently, most of the people use the accuracy measure, area under the receiver operating characteristic (ROC) curve to choose the best diagnostic marker among the available markers for diagnosis. Some authors have tried to combine the multiple markers by an optimal linear combination to increase the discriminatory power. In this paper, we propose an alternative method that combines two continuous biomarkers by direct bivariate modeling of the ROC curve under log-normality assumption. The proposed method is applied to simulated data set and prostate cancer diagnostic biomarker data set.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1046823 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:12:p:2671-2685
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1046823
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().