Test of two hypotheses explaining the size of populations in a system of cities
Nikolay K. Vitanov and
Marcel Ausloos
Journal of Applied Statistics, 2015, vol. 42, issue 12, 2686-2693
Abstract:
Two classical hypotheses are examined about the population growth in a system of cities: Hypothesis 1 pertains to Gibrat's and Zipf's theory which states that the city growth-decay process is size independent; Hypothesis 2 pertains to the so-called Yule process which states that the growth of populations in cities happens when (i) the distribution of the city population initial size obeys a log-normal function, (ii) the growth of the settlements follows a stochastic process. The basis for the test is some official data on Bulgarian cities at various times. This system was chosen because (i) Bulgaria is a country for which one does not expect biased theoretical conditions; (ii) the city populations were determined rather precisely. The present results show that: (i) the population size growth of the Bulgarian cities is size dependent, whence Hypothesis 1 is not confirmed for Bulgaria; (ii) the population size growth of Bulgarian cities can be described by a double Pareto log-normal distribution, whence Hypothesis 2 is valid for the Bulgarian city system. It is expected that this fine study brings some information and light on other usually considered to be more pertinent countries of city systems.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1047744 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:12:p:2686-2693
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1047744
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().