Bayesian modelling of health insurance losses
Zeinab Amin and
Maram Salem
Journal of Applied Statistics, 2015, vol. 42, issue 2, 231-251
Abstract:
The purpose of this paper is to build a model for aggregate losses which constitutes a crucial step in evaluating premiums for health insurance systems. It aims at obtaining the predictive distribution of the aggregate loss within each age class of insured persons over the time horizon involved in planning employing the Bayesian methodology. The model proposed using the Bayesian approach is a generalization of the collective risk model, a commonly used model for analysing risk of an insurance system. Aggregate loss prediction is based on past information on size of loss, number of losses and size of population at risk. In modelling the frequency and severity of losses, the number of losses is assumed to follow a negative binomial distribution, individual loss sizes are independent and identically distributed exponential random variables, while the number of insured persons in a finite number of possible age groups is assumed to follow the multinomial distribution. Prediction of aggregate losses is based on the Gibbs sampling algorithm which incorporates the missing data approach.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.947247 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:2:p:231-251
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.947247
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().