Likelihood analysis for a class of beta mixed models
Wagner Hugo Bonat,
Paulo Justiniano Ribeiro and
Walmes Marques Zeviani
Journal of Applied Statistics, 2015, vol. 42, issue 2, 252-266
Abstract:
Beta regression is a suitable choice for modelling continuous response variables taking values on the unit interval. Data structures such as hierarchical, repeated measures and longitudinal typically induce extra variability and/or dependence and can be accounted for by the inclusion of random effects. In this sense, Statistical inference typically requires numerical methods, possibly combined with sampling algorithms. A class of Beta mixed models is adopted for the analysis of two real problems with grouped data structures. We focus on likelihood inference and describe the implemented algorithms. The first is a study on the life quality index of industry workers with data collected according to an hierarchical sampling scheme. The second is a study assessing the impact of hydroelectric power plants upon measures of water quality indexes up, downstream and at the reservoirs of the dammed rivers, with a nested and longitudinal data structure. Results from different algorithms are reported for comparison including from data-cloning, an alternative to numerical approximations which also allows assessing identifiability. Confidence intervals based on profiled likelihoods are compared with those obtained by asymptotic quadratic approximations, showing relevant differences for parameters related to the random effects. In both cases, the scientific hypothesis of interest was investigated by comparing alternative models, leading to relevant interpretations of the results within each context.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.947248 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:2:p:252-266
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.947248
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().