Stepwise local influence in generalized autoregressive conditional heteroskedasticity models
Lei Shi,
Md. Mostafizur Rahman,
Wen Gan and
Jianhua Zhao
Journal of Applied Statistics, 2015, vol. 42, issue 2, 428-444
Abstract:
Detection of outliers or influential observations is an important work in statistical modeling, especially for the correlated time series data. In this paper we propose a new procedure to detect patch of influential observations in the generalized autoregressive conditional heteroskedasticity (GARCH) model. Firstly we compare the performance of innovative perturbation scheme, additive perturbation scheme and data perturbation scheme in local influence analysis. We find that the innovative perturbation scheme give better result than other two schemes although this perturbation scheme may suffer from masking effects. Then we use the stepwise local influence method under innovative perturbation scheme to detect patch of influential observations and uncover the masking effects. The simulated studies show that the new technique can successfully detect a patch of influential observations or outliers under innovative perturbation scheme. The analysis based on simulation studies and two real data sets show that the stepwise local influence method under innovative perturbation scheme is efficient for detecting multiple influential observations and dealing with masking effects in the GARCH model.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.957661 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:2:p:428-444
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.957661
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().