A multiple imputation approach to nonlinear mixed-effects models with covariate measurement errors and missing values
Wei Liu and
Shuyou Li
Journal of Applied Statistics, 2015, vol. 42, issue 3, 463-476
Abstract:
In longitudinal studies, nonlinear mixed-effects models have been widely applied to describe the intra- and the inter-subject variations in data. The inter-subject variation usually receives great attention and it may be partially explained by time-dependent covariates. However, some covariates may be measured with substantial errors and may contain missing values. We proposed a multiple imputation method, implemented by a Markov Chain Monte-Carlo method along with Gibbs sampler, to address the covariate measurement errors and missing data in nonlinear mixed-effects models. The multiple imputation method is illustrated in a real data example. Simulation studies show that the multiple imputation method outperforms the commonly used naive methods.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.960372 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:3:p:463-476
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.960372
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().