Application of skew-normal distribution for detecting differential expression to microRNA data
Ahmed Hossain and
Joseph Beyene
Journal of Applied Statistics, 2015, vol. 42, issue 3, 477-491
Abstract:
Traditional statistical modeling of continuous outcome variables relies heavily on the assumption of a normal distribution. However, in some applications, such as analysis of microRNA (miRNA) data, normality may not hold. Skewed distributions play an important role in such studies and might lead to robust results in the presence of extreme outliers. We apply a skew-normal (SN) distribution, which is indexed by three parameters (location, scale and shape), in the context of miRNA studies. We developed a test statistic for comparing means of two conditions replacing the normal assumption with SN distribution. We compared the performance of the statistic with other Wald-type statistics through simulations. Two real miRNA datasets are analyzed to illustrate the methods. Our simulation findings showed that the use of a SN distribution can result in improved identification of differentially expressed miRNAs, especially with markedly skewed data and when the two groups have different variances. It also appeared that the statistic with SN assumption performs comparably with other Wald-type statistics irrespective of the sample size or distribution. Moreover, the real dataset analyses suggest that the statistic with SN assumption can be used effectively for identification of important miRNAs. Overall, the statistic with SN distribution is useful when data are asymmetric and when the samples have different variances for the two groups.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.962490 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:3:p:477-491
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.962490
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().